Adaptive mutation of biochemical reaction constants: Fisher's geometrical model without pleiotropy

نویسندگان

  • Ryan N. Gutenkunst
  • James P. Sethna
چکیده

The distribution of fitness effects of adaptive mutations remains poorly understood, both empirically and theoretically. We study this distribution using a version of Fisher’s geometrical model without pleiotropy, such that each mutation affects only a single trait. We are motivated by the notion of an organism’s chemotype, the set of biochemical reaction constants that govern its molecular constituents. From physical considerations, we expect the chemotype to be of high dimension and to exhibit very little pleiotropy. Our model generically predicts striking cusps in the distribution of the fitness effects of arising and fixed mutations. It further predicts that a single element of the chemotype should comprise all mutations at the high-fitness ends of these distributions. Using extreme value theory, we show that the two cusps with the highest fitnesses are typically well-separated, even when the chemotype possesses thousands of elements; this suggests a means to observe these cusps experimentally. More broadly, our work demonstrates that new insights into evolution can arise from the chemotype perspective, a perspective between the genotype and the phenotype.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Competition and fixation of cohorts of adaptive mutations under Fisher geometrical model

One of the simplest models of adaptation to a new environment is Fisher's Geometric Model (FGM), in which populations move on a multidimensional landscape defined by the traits under selection. The predictions of this model have been found to be consistent with current observations of patterns of fitness increase in experimentally evolved populations. Recent studies investigated the dynamics of...

متن کامل

Fisher's Geometric Model with a Moving Optimum

Fisher's geometric model has been widely used to study the effects of pleiotropy and organismic complexity on phenotypic adaptation. Here, we study a version of Fisher's model in which a population adapts to a gradually moving optimum. Key parameters are the rate of environmental change, the dimensionality of phenotype space, and the patterns of mutational and selectional correlations. We focus...

متن کامل

Compensating for our load of mutations: freezing the meltdown of small populations.

We have investigated the reduction of fitness caused by the fixation of new deleterious mutations in small populations within the framework of Fisher's geometrical model of adaptation. In Fisher's model, a population evolves in an n-dimensional character space with an adaptive optimum at the origin. The model allows us to investigate compensatory mutations, which restore fitness losses incurred...

متن کامل

Mean curvature versus normality: a comparison of two approximations of Fisher's geometrical model.

Fisher's geometrical model amounts to a description of mutation and selection for individuals characterised by a number of quantitative traits. In the present work the fitness landscape is not assumed to be spherically symmetric, hence different points, i.e. phenotypes, on a surface of constant fitness generally have different curvatures. We investigate two different approximations of Fisher's ...

متن کامل

A model of developmental evolution: selection, pleiotropy and compensation.

Development and physiology translate genetic variation into phenotypic variation and determine the genotype-phenotype map, such as which gene affects which character (pleiotropy). Any genetic change in this mapping reflects a change in development. Here, we discuss evidence for variation in pleiotropy and propose the selection, pleiotropy and compensation model (SPC) for adaptive evolution. It ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007